33 research outputs found

    Discovery of a Supercluster at z ~ 0.91 and Testing the ΛCDM Cosmological Model

    Get PDF
    The ΛCDM cosmological model successfully reproduces many aspects of the galaxy and structure formation of the universe. However, the growth of large-scale structures (LSSs) in the early universe is not well tested yet with observational data. Here, we have utilized wide and deep optical–near-infrared data in order to search for distant galaxy clusters and superclusters (0.8 < z < 1.2). From the spectroscopic observation with the Inamori Magellan Areal Camera and Spectrograph (IMACS) on the Magellan telescope, three massive clusters at z ~ 0.91 are confirmed in the SSA22 field. Interestingly, all of them have similar redshifts within Δ z ~ 0.01 with velocity dispersions ranging from 470 to 1300 km s−1. Moreover, as the maximum separation is ~15 Mpc, they compose a supercluster at z ~ 0.91, meaning that this is one of the most massive superclusters at this redshift to date. The galaxy density map implies that the confirmed clusters are embedded in a larger structure stretching over ~100 Mpc. ΛCDM models predict about one supercluster like this in our surveyed volume, consistent with our finding so far. However, there are more supercluster candidates in this field, suggesting that additional studies are required to determine if the ΛCDM cosmological model can successfully reproduce the LSSs at high redshift

    Development of Recombinant Protein-Based Vaccine Against Classical Swine Fever Virus in Pigs Using Transgenic Nicotiana benthamiana

    Get PDF
    Classical swine fever virus (CSFV) is highly contagious, and fatal to infected pigs. Vaccines against CSFV have been developed from attenuated or modified live viruses. These vaccines are effective for immunization of animals, but they are associated with problems such as the accidental spreading of viruses to animals in the field, and with barriers to trade following vaccination. Here, we report the generation of transgenic Nicotiana benthamiana plants for large-scale, cost-effective production of E2 fusion protein for use as a recombinant vaccine against CSFV in pigs. Transgenic N. benthamiana plants harboring an intergenic, single-copy insertion of a chimeric gene encoding E2 fusion protein had high levels of transgene expression. For large-scale production of E2 fusion protein from leaf tissues, we developed a protein-purification protocol consisting of cellulose-binding domain (CBD)–cellulose-based affinity purification and size-exclusion gel-filtration chromatography. E2 fusion proteins showed high immunogenicity in piglets and provided protection against CSFV challenge. The CBD in the E2 fusion protein was also highly immunogenic. These results suggest that plant-produced recombinant E2 fusion proteins can be developed into cost-effective vaccines against CSFV, with the CBD as a marker antigen to differentiate between vaccination and natural infection

    Highly sensitive near-infrared SERS nanoprobes for in vivo imaging using gold-assembled silica nanoparticles with controllable nanogaps

    Get PDF
    Abstract Background To take advantages, such as multiplex capacity, non-photobleaching property, and high sensitivity, of surface-enhanced Raman scattering (SERS)-based in vivo imaging, development of highly enhanced SERS nanoprobes in near-infrared (NIR) region is needed. A well-controlled morphology and biocompatibility are essential features of NIR SERS nanoprobes. Gold (Au)-assembled nanostructures with controllable nanogaps with highly enhanced SERS signals within multiple hotspots could be a breakthrough. Results Au-assembled silica (SiO2) nanoparticles (NPs) (SiO2@Au@Au NPs) as NIR SERS nanoprobes are synthesized using the seed-mediated growth method. SiO2@Au@Au NPs using six different sizes of Au NPs (SiO2@Au@Au50–SiO2@Au@Au500) were prepared by controlling the concentration of Au precursor in the growth step. The nanogaps between Au NPs on the SiO2 surface could be controlled from 4.16 to 0.98nm by adjusting the concentration of Au precursor (hence increasing Au NP sizes), which resulted in the formation of effective SERS hotspots. SiO2@Au@Au500 NPs with a 0.98-nm gap showed a high SERS enhancement factor of approximately 3.8 × 106 under 785-nm photoexcitation. SiO2@Au@Au500 nanoprobes showed detectable in vivo SERS signals at a concentration of 16μg/mL in animal tissue specimen at a depth of 7mm. SiO2@Au@Au500 NPs with 14 different Raman label compounds exhibited distinct SERS signals upon subcutaneous injection into nude mice. Conclusions SiO2@Au@Au NPs showed high potential for in vivo applications as multiplex nanoprobes with high SERS sensitivity in the NIR region. Graphical Abstrac

    Reconfigurable Radio Frequency (RF) Front-end and its Fast Optimization for Adapting to Dynamic Communication Environments

    No full text
    <p>In order to support a multi-standard platform using a Software Defined Radio (SDR), the novel idea of reconfigurable Radio Frequency (RF) frontends have recently been proposed by the U.S. Defense Advanced Research Projects Agency (DARPA). A reconfigurable RF front-end has RF components that are reconfigured separately in order to satisfy the requirement of a particular communication standard. The reconfigurable RF front-end is a more reliable front-end for SDR than the currently used fixed wide-band RF front-ends, which have degraded system performance by passing more interference signals spread out in a wide range of frequency band. In order to realize the reconfigurable RF front-end, this thesis investigates the optimization method to select from the available configurations in radio environments with interference. In order to select an optimal configuration, we propose the Environment-Adaptable Fast (EAF) optimization algorithm for a reconfigurable RF front-end. A reconfigurable RF front-end not only needs to select an appropriate configuration that can operate for a given standard, but also needs to adapt quickly to a dynamic communication condition. This is difficult since there may be millions of available configurations. First, we studied RF impairment estimation for reconfigurable RF front-ends. Nonlinearity, phase noise, noise figure as well as frequency offset are RF impairments most likely to affect a particular standard. Second, we formulated the Signal-to-Interference-and-Noise Ratio (SINR) calculation which hastens the optimization process. We demonstrate the performance of the EAF optimization method in an exemplary scenario using Matlab Simulink. Finally, we designed the EAF optimization algorithm as a heuristic to select a configuration from the available ones. These simulation results demonstrate that while finding an optimal configuration, the EAF optimization significantly reduces simulation time compared to the four other previously proposed optimization methods. Thus, we expect that a reconfigurable RF front-end would be useful in real-time communication environments, since it would need significantly fewer reconfigurations to find an adequate configurations.</p

    Activating MoS2 Basal Plane with Ni2P Nanoparticles for Pt-Like Hydrogen Evolution Reaction in Acidic Media

    No full text
    2D molybdenum disulfide (MoS2) displays a modest hydrogen evolution reaction (HER) activity in acidic media because the active sites are limited to a small number of edge sites with broader basal planes remaining mostly inert. Here, it is reported that the MoS2 basal planes could be activated by growing nickel phosphide (Ni2P) nanoparticles on them. Thus a Ni2P/MoS2 heterostructure is constructed via in situ phosphidation of an indigenously synthesized NiMoS4 salt as a single precursor to form a widely cross???doped and chemically connected heterostructure. The conductivity and stability of the Ni2P/MoS2 heterostructure are further enhanced by hybridization with conductive N???doped carbon supports. As a result, the Ni2P/MoS2/N:RGO or Ni2P/MoS2/N:CNT electrocatalyst displays Pt???like HER performance in acidic media, outperforming the incumbent best HER electrocatalyst, Pt/C, in a more meaningful high current density region (&gt;200 mA cm???2) making them a promising candidate for practical water electrolysis applications. Since nonprecious metal catalysts showing Pt???like HER performance in acidic media are rare, the Ni2P/MoS2 heterostructure catalyst is a promising candidate for practical hydrogen production via water electrolysis

    Environment-Adaptable Fast Multi-Resolution (EAF-MR) optimization in large-scale RF-FPGA systems

    No full text
    Abstract Software-defined radio (SDR) can have high communication quality with a reconfigurable RF front-end. One of the main challenges of a reconfigurable RF front-end is finding an optimal configuration among all possible configurations. In order to efficiently find an optimal configuration, Environment-Adaptable Fast (EAF) optimization utilizes calculated signal-to-interference-and-noise ratio (SINR) and narrows down the searching space (Jun et al., Environment-adaptable efficient optimization for programming of reconfigurable Radio Frequency (RF) receivers, 2014). However, we found several limitations for applying the EAF optimization to a realistic large-scale Radio Frequency-Field Programmable Gate Array (RF-FPGA) system. In this paper, we first investigated two estimation issues of RF impairments: a saturation bias of nonlinearity estimates and limited resources for RF impairment estimation. Using the estimated results, the SINR formula was calculated and used for the Environment-Adaptable Fast Multi-Resolution (EAF-MR) optimization, which was designed by applying the EAF optimization to multi-resolution optimization. Finally, our simulation set-up demonstrated the efficiency improvement of the EAF-MR optimization for a large-scale RF-FPGA
    corecore